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ABSTRACT 

The paper  discusses approaches to constructing two-sided ideals of the 

modular  group algebra of finitary symmetr ic  group. 

The aim of these notes is to collect information about the group rings of the 

finitary symmetric group over fields of prime characteristic. We denote by Sn 

the symmetric group on symbols {1 , . . . , n}  and by S the finitary symmetric 

group on an infinite set of symbols. Recall that  the finitary symmetric group is 

the group of all finitary permutations of an infinite set. A permutation of a set 

is called finitary if it fixes all but finitely many elements of the set. 

The finitary symmetric group plays an important role in the theory of identities 

of algebras, see [1, 11, 12, 15]. In particular, in the theory of trace identities as 

developed in Razmyslov [11, 12] one needs to know the two-sided ideals of the 

group ring of the finitary symmetric group. For a ground field of characteristic 0 

there exists a complete description of the two-sided ideals, see [6, 11]. However, 

very little is known about ideals in the group ring of the finitary symmetric group 

over fields of prime characteristic. In particular, even the very general question 

whether two-sided ideals satisfy the ascending chain condition remains open. 
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I would like to attract  the attention of a wider circle of mathematicians to this 

topic. 

SOME NOTATION.  RG denotes the group ring of a group G over a ring R. All 

modules considered are left modules, l a  stands for the trivial one-dimensional 

representation of G or for the trivial module of dimension 1. If H is a group 

and G C H then 1H is the induced representation or the induced module. More 

generally, if r is a representation of G (RG-module) then cH is the induced 

representation (module). For an RG-module L, we write AnnRc(L) for the 

annihilator of L in RG. An denotes the alternating group on n symbols. Sn and 

S have been introduced above. 

1. A n n i h i l a t o r s  o f  i n d u c e d  m o d u l e s  

The most natural way of constructing ideals in group rings is to take annihilators 

of RG-modules in RG. For infinite groups most modules have zero annihilators, 

and the problem of finding modules with nonzero annihilators is not easy. For the 

finitary symmetric group there exist many modules with nontrivial annihilators. 

If the ground field P is of characteristic 0, all two-sided ideals of PG  are known. 

If P is of prime characteristic, the problem of determining ideals seems to be very 

difficult. Possibly, it would be helpful to study first the annihilators of induced 

modules. Essential information may be obtained from [16] and [7]. In [16] the 

subgroups X of S, such that the annihilator of the PS-module 1 s is not zero, are 

determined. In [7] it is proved that  this annihilator is a prime ideal for certain 

X. The latter will be discussed in the next section. 

THEOREM 1 ([16]): Let P be an arbitrary field and ~ an infinite set. Let X C 

S = S(f~) be a subgroup. Then the following conditions are equivalent: 

(i) the annihilator of the induced PS-module  lSx is not zero; 

(ii) X contains a normal subgroup of finite index which is the product of 

finitely many finitary alternating groups Al t ( f l i ) , . . . ,  Alt(f~n) with dis- 

joint infinite f~ 's ( i = 1 , . . . ,  n) whose complement f~ - ( f~ l U . . . U f~n ) is 

finite (or empty). 

The way to prove this Theorem is based on the following 

PROPOSITION 1: Let G be an arbitrary group and X a subgroup. Let L be a 

PX-modu le  and L c the induced PG-module. Suppose that Ann(L C) r {0}. 

Then there exists a finite subset F of G such that X ~ g - l  Fg ~ {1) for all g C G. 
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Proo~ Let 0 r Ann(LG). Write a = y~ik=l aigi �9 PG with gi �9 G, 0 r ai �9 P.  

Take for F the set g~-lgj (i,j  �9 {1 , . . . ,  k}). As L c is a direct sum ofg| where g 

runs over a transversal T of the left cosets G/X,  aL G = {0} implies ag | L = {0} 

for all g �9 G. Hence for any 1 �9 L we have ~-~-~=1 aigig| = 0 = ~ik=l aig-lglg| 

If we write g-lgig = tix~ with t~ �9 T, xi �9 X then 0 = ~k=la~t~| 

It follows that  ti = tj at least for one pair i , j  �9 { 1 , . . . , k }  with i r j. So 

g-lgigxT 1 = g-lgjgx~l whence 1 r g-lg-~lg~g = x~lxi �9 X. Hence we see that  

g- lFg N X ~ {1}, as desired. | 

It turned out [16] that for subgroups X of S the condition (ii) of Theorem 1 is 

equivalent to the existence of a finite set F of G such that  X N g- lFg  ~ {1} for 

all g �9 G. So, if Ann(L a) r {0}, where L is a PX-module,  then X is as in (ii) 

of Theorem 1. However, for these X it remains unclear for which PX-modules  

L one has Ann(L a) ~ {0}. It is clear from the above that  a necessary condition 

is Annpx(L)  r {0}). 

2. A P S - m o d u l e  constructed  via the  free associative algebra 

Let P(X)  denote the free associative algebra over a field P with the set X = 

{Xl,X2,. . .  } of free generators. We call elements of P(X) polynomials in the 

indeterminates xl ,  x 2 , . . . ,  which, however, do not commute with each other. Let 

V be the subspace of linear polynomials in xl,  x2 , . . .  �9 By Pk(X) we denote the 

subalgebra of P(X)  generated by x l , . . . ,  xk and Vk c V the subspace of linear 

polynomials in X l , . . . ,  xk. The action of the general linear group GLk(P)  on Vk 

extends to Pk(X) in the natural way. Denote by Vk~ the space of polynomials 

of Pk(X) of degree n. The monomials x~lxi2...xi~ ( i l , . . .  ,in E {1 , . . . ,  k}) form 

a basis of Vk~. There are two natural actions of symmetric groups on Vk~. The 

group Sk acts on the monomials xil xi2 . . -xi~ by permuting indeterminates, and 

S~ acts on them by permuting positions which are occupied by x's. We now fix 

our attention on the second case. 

Let B ( j l , . . . , j k )  with j l  + "'" + jk = n be the set of all monomials of 

degree ji  in xi (i = 1 , . . . , k )  and M ( j l , . . . , j k )  the P-span of B(j~, . . . , jk) .  

Observe that  we allow for convenience that  some j~ may be zero. It is clear that  

M ( j l , . . . ,  jk) is a permutation PSi -module  and S~ is transitive on B ( j l , . . . ,  jk). 

The stabilizer of any monomial in S~ is a Young subgroup Y ( j l , . . .  ,jk). It 

follows that  M ( j l , . . . , j k )  is an induced module 1y(j~,...jk ). Furthermore, Vk~ 

is a permutat ion PSn-module which is a direct sum of various M ( j l , . . . , j k )  
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wish j l  + " "  + jk = n. Observe that  the S, -orbi t  of B ( j l , . . .  , jk) contains that  

monomial f ,  which has the indeterminate xi in the positions Jl + "'" + j i -1  + l 

where 0 < l _< ji (it may be written as x J1 . . .  x~k). If ( j~ , . . . ,  j~) is a permutat ion 

of ( j l , . - . ,  jk), then M(j~ , . . . ,  j~) is isomorphic to M ( j l , . . . ,  jk). 

If  S ,  is naturally embedded into Sn+l, then Vk(,+l) [ S ,  is a direct sum of k 

PSn-modules  each isomorphic to Vk,. Let I(n, k) denote the annihilator of Vk, 

in PSn. Then I(n, k) C I(n + 1, k). Hence ~J, I(n, k) = I(k) is a two-sided ideal 

of PS. Let V(k) denote the direct limit of Vkn. Then I(k) = Annps  V(k). 

THEOREM 2 (Formanek and Procesi [7, w PS/I(k)  contains no nilideals. In 

particular, I ( k ) is a semiprime ideal of P S. 

We show that  I(k) is the annihilator of an induced module. 

PROPOSITION 2: Let Ak be the annihilator of the induced module 1 S, where X 

is the Young subgroup associated with the partition of 12 in k infinite subsets. 

Then I(k) = Ak. 

Proof." Put  A(k, n) = AkNPSn. We show that  A(k, n) = I(k, n). Recall that  the 

restriction lSx I Sn is a direct sum of modules isomorphic to ( ls .nsxs- , )s"  where 

s runs over a transversal of double cosets S,~ \ S /X .  Let 12,~ = supp(Sn) and let 

A 1 , . . . , A k  be the orbits of X on 12. Put  ji(s) = [sA, N 12n[, i = 1 , . . . , k .  Then 

Sn A sXs  -1 is the Young subgroup Y( j l ( s ) , . . . , j k ( s ) )  with j l  + "'" + Jk -- n. 

It  is clear that  every Young subgroup Y ( j l , . . . , j k )  with j l  + "'" + jk = n is 

of the form S,  A sXs  -1 for a suitable s E S. Hence lSx ] S ,  and Vk both are 

direct sums of modules isomorphic to M ( j l , . . . ,  jk) with j l  + " "  + j k  = n. Hence 

Annps~ I S  [ Sn = Annps~ Vk -- I(n, k). Hence Annps  I S  = Annps  Vk = I(k). 
| 

I t  would be good to know more about ideals Annps  1~ as well as about  the 

relationship of these ideals to other ideals. For example, what are the X with 

Annps  1 s semiprime? Is the square of this ideal different from it? 

We know no way to solve the following 

PROBLEM: Is it true that  two-sided ideals of PS  satisfy the ascending chain 

condition? 

For P of characteristic 0 this is well known and follows immediately from 

[6, 11]. 
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There is some information about the module 1 s where X is the pointwise 

stabilizer of a finite subset of ~. Camina and Evans [3] enumerate the submodules 

of these modules. In particular, we have 

THEOREM 3 ([3, Theorem 2.4])): Let Lk be the permutation PS-module af- 

forded by the action ors  on the set of all k point sets of f~. Then the submodule 

lattice of Lk is a finite chain. 

Much earlier Latyshev [9, Theorem 2] observed that submodules of Lk satisfy 

the ascending chain conditon. 

3. Razmyslov's  ideals in the group r ings o f  symmetric  groups 

The results of Sections 3 and 4 are due to Razmyslov [12]. The origin of this 

exposition is Amitsur's lectures [1]; we give more details and stress the group 

rings of symmetric groups rather than applications to polynomial identities. An 

additional reason to expose the results of [12] here is that Razmyslov's book is 

too difficult for the reader who has no special interest in identities of algebras. 

For a C Sn we put 

cn(s) = - 1  + {the numbers of orbits of the cyclic group (s) on {1, 2 , . . . ,  n}}. 

In particular, for s -- e, the identity permutation, we have cn(e) = n - 1. 

Let T = P[t] be the polynomial ring in one indeterminate t over a field P. 

Definition 1: Let 0: PS~ ~ T be the linear function defined on S~ by O(s) = t 

(so s~). 
Thus, if a = ~8~s~ ass C PSi ,  then O(a) = ~-~es~ a~tC~(~)" Observe that  0 is 

constant on conjugacy classes of PSn; hence 0 can be considered as a function 

on Z = Z(PS~), the center of PSn. Observe that if X~ is the complex character 

of the representation of S~ in V~n (see Section 2 above) then X,~(s) -- nC~(~)+x; 

see James and Kerber [8, 4.3.4]. 

Definition 2: Let I be an ideal of T = P[t]. We define the Razmyslov ideal Ln (I) 

as follows: 

L ~ ( e ) = { a =  E a s s C P S ~ : O ( a g )  C I f o r a l l g E S ~  } .  
sEs,~ 

We shall consider the group ring TS~ of Sn over the polynomial ring T = Pit]. 

We put dn = ~'~es~ t~(~)s E TSn. Observe that dn is central in TSn. 
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PROPOSITION 3: Let I be an ideal of R and ISn the corresponding ideal of RSn. 

Let a = ~-~es~ ass 6 PSi .  The following conditions are equivalent: 

(i) a �9 L~(I);  

(ii) dna �9 ISn. 

Proof." We have 

dna= E astCn(~)rs= E q ( s ~ a s t C ~ ( q s - 1 )  I .  
r,s6S~ q6S~ 

As cn(s) = c~(s -1) for s E Sn, the expression in the brackets is equal to 

~ e s ~  ast~(~q-~)" If  a 6 L~(I) then ~ 6 s n  a~t~(sq-~) 6 I for all q 6 Sn so 

d~a 6 IS~. Conversely, if d~a 6 IS~, then the coefficient of q in the expression 

above belongs to I for all q; this means that  a E L~(I). | 

Observe that  Ln(I) is a two-sided ideal of Sn, as d~ is a central element of 

RS~. 

The crucial fact is that  the correspondence I --* L~ (I) is compatible with the 

embedding S,~ ~ S~+1. 

PROPOSITION 4: Let g E PS~ C PSn+I (the natural embedding). Then g E 

L (I) if o ly if g �9 

Prior to proving this, we express dn+l in terms of d~. To be precise, we shall 

denote the image of an element x of Sn in Sn+l or of an element x of PS~ in 

PS~+, by 2. 

LEMMA 1: Let 5~ denote the transposition (i, n + 1), and e the identity element 

of a group. Then d~+~ = ~l~(te + 5~ + . . . + 5~) = (te + 5~ + . . .  + 5~)d~. 

Proof: We have 

dn + l -~ 
s6S~+1 sES~ i=1 sES~ 

As On+l(8 ) = an(8 ) "4" 1 and en-1-1(851) = Cn(8) for all i, this equals 

\s6S~ / 
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By using left cosets instead of right ones we similarly get the second equality of 

the Lemma. 

P roo f  of Proposition 4: Obviously, gd,~ E IS~ is equivalent to ~d E IS~+I. 

Therefore, by Lemma 1, g E L~(I) is equivalent to ~ c L~+I(I). Observe further 

that  e, 51 , . . . ,  5~ form a basis of the free RS~-module RSn+I; hence it follows 

from ~cl~(te + 51 + " "  + 6,) E ISn+l that ~d~ E ISn+l. I 

COROLLARY 1: L~(I) C Ln+l(I). 

Let us consider PS~ as a subalgebra of PS~+I under the natural embedding. 

Put  L(I)  = UnL~(I ) .  It is clear that L(I) is an ideal of PS. For the case 

char(P) -- 0 the ideals L(I)  are understood fairly well. For char(P) > 0 only 

a little is known about these ideals. Razmyslov has obtained some essential 

information for I - (t - k)T with 1 _ k < p, and for I = (t - 1)(t - 2 ) . . .  

(t - p + 1)T; see [12, w 

PROPOSITION 5: Let J be a prime ideal o f T  other than tT. Then the ideal L(J) 

is prime. 

Proof." Put  I = L(J).  Let A, B be ideals with AB c_ I. Let a E A, b C B be 

elements such that  a ~ I, b ~ I. Then a, b E PS~ for suitable n. Since a ~ I,  

b ~ I,  it follows that  O(aa) ~ J and O(bv) ~ J for some a, T E S~. By replacing a 

and b by aa and bT-, respectively, we can assume that 0(a) r J, 0(b) ~ J. Viewing 

S~ as a subgroup of $2~ we can replace b by sbs -1, where s E S is such that  

sbs -1 fixes the symbols {1 , . . . ,  n}. Of course, O(sbs -1) -- O(b) so sbs -1 r J. Let 

a = ~ akak and b = ~-~k ~kbk, with (~k, ~k E P, ak, bk C S~. We have O(ab) E J 

and O(ab) = ~k , l  (~k/3lt~2n(~b')" As a fixes the symbols {n + 1 , . . . ,  2n}, and b 

fixes the symbols {1 , . . .  ,n}, we have c2~(akbz) = c~(ak) + c~(bt) + 1 for all k,l. 

It follows that  

O(ab) = E (~kJ3ttc2"(a~bz) = E (~k/~'tc~(ak)+cn(bl)+l 
k,l k,l 

As J is a prime ideal and t ~ J ,  either O(a) or O(b) ~ J. So the Proposition 

follows. I 
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4. R a z m y s l o v ' s  ideals  in t h e  case  of  c h a r a c t e r i s t i c  0 

I t  is well-known that  the field of rational numbers Q is a splitting field for 

representations of symmetric groups. It  follows that  central idempotents can 

be expressed in terms of class sums with rational coefficients. We recall that  irre- 

ducible representations of Sn over C or Q are parametrized by Young diagrams. 

Let An denote the set of Young diagrams of size n. 

In this section, P is a field of characteristic 0. Let T~ be the sum in PSn of all 

the elements s E Sn with c,~(s) = i. Then dn = tn-le + t n - 2 T n _ 2  -~ " '"  ~- 7- 0. Let 

1 = ~--:~AeA e~ be the decomposition of the unit element of PSn. Let us express Tj 

in terms of eA and collect the coefficients of eA. We get 

(1) d,~ = t n -1 .  1 + tn-27"n_2 + ' ' "  + TO = E D~(t)e~. 
AEA 

It is clear that  D~ (t) are polynomials in t with rational coefficients. Let X~ be the 

character of the irreducible representation corresponding to e~. Then ~(~(e,) = 0 

for A # p and x~(e~) = X~(1). Hence we have 

(2) D (t) = 
i 

By multiplying (1) by e~ we get 

(3) d~e~ = D~(t)e~. 

PROPOSITION 6: Let J be an ideal o f T  = PIT]. Then PS~e~ E Ln(J) if and 

only if Dx (t) E J. 

Proo~ If D~(t) E J then by (3) d~e~ E JSn; by Proposition 3 we have e~ E 

Ln(J). Conversely, if e~ E L,~(J) then let e~ = ~ e s ,  a~s with a~ E P; then 

d~e~ = ~-~ D~(t)a~s E JS~, which implies that  D~(t) E J. I 

COROLLARY 2: Let A C_ # be diagrams. Then Dg(t) is a multiple olD,(t) .  

Proo~ Take J = D~(t)T. Let n = ]A], m = [#I. By (3), d~e~ = D~(t)e~ C JS~, 

and by Proposition 3, e~ E Ln(J); so PSme~PSm C_ Lm(J) as L(J) is a two- 

sided ideal. I t  is well known that  A C_ # implies that  e ,  E PSme~PSm. Hence 

PSme,  C_C_ PSme~PSm C_ Lm(J). By Proposition 3, Dg(t) E J, so D,(t) is a 

multiple of D~ (t). I 

In fact, Du(t) is a multiple of D~(t) if and only if A C_ #. However, we are not 

yet ready to prove this (see Corollary 5 below). 
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COROLLARY 3: Ln(J)  is the direct sum of those ideals PSneA such that 

OA(t) E J.  

Let A be a diagram. Let us fill ~ with integers so that we place the number 

i - j into the box located in the i-th row and the j - th  column. To A we may 

associate the polynomial C~(t), called the content of ,k, whose roots are just 

the numbers in the boxes of A defined above. So, if t is an indeterminate, then 

CA(t) = l-I(t - i + j) with the product taken over all boxes of ~. The notion of 

the diagram content was probably introduced by Robinson and Thrall [14]; see 

also [13, w It is clear that  A is completely determined by its content (see [13, 

4.33]). 

THEOREM 4 ([12, Lemma 26.6]): tDA(t) = CA(t). 

COROLLARY 4: D~(t) determines A (that is, DA(t) are different for different A 's). 

Observe that  Corollary 4 follows, provided the collection 

{XA (v~)/XA (1) }0<~<n-1 

determines ,k (see (2)). This fact is contained in Benson and Curtis [2, Theorem 

6.7]. It follows also from a result of Farahat and Higman [5] that  the class sums are 

polynomials with integer coefficients in ~-~'s. Indeed, as the T~'S are scalars in the 

representation afforded by XA, we have X~ (1-L ~-~)/XA(1) = 1-L(XA(T~)/X~(1)) ~'. 

It follows that  {)C~ (Ti)/XA (1) } determines the "normalized" character ~(A/)CA (1). 

In turn, the latter determines XA, as (X~/X~(1), X~/XA(1)) -- 1/(XA(1)) 2. 

COROLLARY 5: I f D , ( t )  is a multiple o lD , ( t ) ,  then A C #. 

Proof of  Theorem 4: By induction on n = IAI. For n = 1 we have DA(t) = 1. 

Suppose that  the Theorem is true for all proper subdiagrams of A. Let us consider 

first the case where ,k is not rectangular. 

0 - 1  - 2  . . .  - s  - s  - 1 
1 0 - 1  . . . . . .  

r r - 1  . . .  

Then ), has at least two corner boxes, say, (k', I') and (k", I"). Let ~' and ~" be the 

diagrams obtained from ~ by omitting the box (k', l') and (k", l"), respectively. 

By the induction assumption tD~,(t) = C~,(t) and tDA,,(t) = C~,,(t). By (2), 
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D~ (t) is of degree n, and by Corollary 2, tD~ (t) is a multiple of tDx, (t) = Cx, (t) 

and of tD~,,(t) = C~,,(t). It follows that tD~(t) = C~,(t)(t - a) and tD~(t) = 

C~ , , ( t ) ( t -  j3) where a, 3 6 C. It follows that a is the root of the polynomial 

Cx,, (t) which is not a root of C~, (t) while 13 is the root of CA, (t) which is not a 

root of C~,, (t). This implies the desired assertion when A is not rectangular. 

The case where A is rectangular is more difficult. Let (k, l) be its unique corner 

box. Let A' be the subdiagram of A, obtained by omitting the box (k, l) from A. 

By the induction assumption, D~ (t) = Cx, (t)(t - a) with a E C; however, what 

is the value of a?  

In order to answer, we calculate the sum a of roots of Dx (t) in two ways. On 

the one hand, a = - l (~)  + k(~) - (k - l )  + a, as the sum of roots of C~,(t) is 

just - I (2  k) + k(~). On the other hand, - a  is equal to the coefficient of t kl-2 of 

D~(t). By formula (2), this coefficient is X~(T)/X~(1), where ~- is the sum of all 

the elements a E KS n  such that ca(a) = n -  1. These are just the transpositions, 

so Tkt-2 is the sum of all transpositions. Since the number of transpositions of 

Ski is (~l), then XX(Tk~-2) = Xx(r t) where ~ is a transposition. According to 

Murnaghan [10, ch.5, w X~(~)/X~(1) = (l - k ) / ( k l -  1) so X~(vkl-2)/X~(1) = 

k l ( l -  k ) /2  = - l (~)  + k(~). Comparing both the values for a, we get a = k - I .  

This completes the proof. | 

Now we can clarify which are the ideals L(I) .  Observe that each ideal of T 

is generated by a single element. Let I = E ( t ) T  where E(t) is a polynomial. 

If L(I )  # {0} then we have ex 6 L(I)  for some diagram A. By Proposition 

6, D~(t) e I. So D~(t) is a multiple of E(t).  In particular, the roots of E(t)  

are integers. Let us locate them into the tableau by placing the root i 6 Z of 

multiplicity m~ into the i-th diagonal with no gaps (however, the root i = 0 has 

to be inserted m0 + 1 times). After this we find the least Young diagram A which 

contains all the numbers inserted. 

This shows that  there exists only one such diagram. This implies 

THEOREM 5: Let I be a proper nonzero ideal o fT .  Then L(I )  = L(D~(t )T)  t'or 

A obtained as above. 

The important question is for which ideals J of T is the Razmyslov ideal L(J)  

nonzero. Obviously, it suffices to solve it for prime J. The answer is available in 

case P is of characteristic zero. 
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COROLLARY 6: L(J) ~ {0} if and only if  J is generated by a polynomial with 

integer roots. 

I do not know whether this asserion is true for prime characteristic. 

THEOREM 6: Suppose P is of characteristic O, and J a proper nonzero ideal ofT. 

Then L(J) is prime if  and only if  J = D~(t)T where A is a rectangular diagram. 

Proof Suppose L(J) is a prime ideal. By Theorem 5, L(J) = L(Dx(t)T) for 

some diagram A. Suppose that A is not rectangular. Then A is a union of two 

proper diagrams, say, A' and A". It is clear that both L(Dx, (t)T) and L(D~,, (t)T) 

contain and do not coincide with L(J). The product of these ideals is contained 

in their intersection. So it suffices to show that the intersection is contained in 

L(J). If x E PG is in the intersection then O(x) lies both in D~,(t) and D~,,(t). 

As D,(t) = C~(t)/t for any diagram v, it follows that O(x) is a multiple of Oh(t). 

Hence x E L(J). So L(D~,(t)T) . L(D~,,(t)T) C L(J), a contradiction. | 

It would be very interesting to answer the question for which J the ideal L(J) 

is prime, when P has prime characteristic. In view of Theorem 6 one cannot 

expect this to be the case only if J is prime. 

A d d e n d u m  

The notion of the content of a diagram plays an important part in the theory of 

p-blocks of p-modular representations of S~. In particular, we have: 

THEOREM 7 (see Robinson [13, 5.36 and 5.42])): Let r162 be ordinary 

irreducible representations of con afforded by the diagrams A, #, respectively. 

Then r r belong to the same p-block if  and only if C~(t) =_ C~(t) (mod p). 

We can give a new proof of this theorem with the aid of a theorem of Farahat 

and Higman [5] and the following formula (see (2) and Theorem 4): 

n--1 

CA(t) = tD~(t) = E t~+lx~(ri)/~(1)" 
i--0 

Let ~x denote the class sum afforded by the conjugacy class labeled by the 

diagram A. Farahat-Higman's theorem says that ~ ' s  are expressed in terms 

of r~ as polynomials with integer nonnegative coefficients. Recall that irre- 

ducible representations r r of Sn belong to the same p-block if and only if 
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X~(~)/X~(1) - X,(~)/X~(1) (mod p) for each v (see, for example, [4, 85.12 

and 85.13]). 

Proof of Theorem 7: It follows from formula (2) of Section 4 that D~(t) =_ 

D~(t) (mod p) if X~(~.)/Xx(1) = X~(~)/X,(1) (mod p), as the T~'S are sums 

of ~ ' s  with integer coefficients. Conversely, if D~(t) =- D,(t) (mod p), then 

X~(Ti)/X~(1) =-- X,(ri)/X,(1) (mod p). As the ~.'s are polynomials in ri with 

integer coefficients, it suffices to show that the Xx(~)/X~(1) are polynomials in 

X~(Ti)/X~(1). Observe that the r are scalar matrices, by Schur's lemma. It 

follows that  X~ (II~ T[')/X~ (1) = Hi (X~ (Ti)X~ (1)) ~' �9 Let ~ = ~ ai~ (1-L Ti ~'~) 

with integer aij. Then 

as desired. 

ADDITIONAL NOTE: After the paper was submitted, there appeared some 

promising ideas and results which deserve to be mentioned here. It was observed 

in Theorem 3.5 [A. E. Zalesskii, Group rings of simple locally finite groups, NATO 

ASI Series C, Vol. 471, Kluwer, Dordrecht-Boston-London, 1995, pp. 219-246] 

that semiprimitive ideals of PS can be described in terms of representations of 

Sn, n = 5, 6 , . . . .  To use this approach, one needs information about the branch- 

ing rule for modular representations of Sn. A weaker form of the branching rule 

was recently obtained by Kleshchev (see [A. S. Kleshchev, Branching rule for 

modular representations of symmetric groups, II, Journal fiir die reine und ange- 

wandte Mathematik 459 (1995), 163-212, Theorem 0.5]). By using this result 

Kleshchev constructed new examples of maximal ideals of PS [A. S. Kleshchev, 

Completely splittable representations of symmetric groups, Journal of Algebra 

(to appear)]. 
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